MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

HOMEWORK 7

Due date: Oct 21 (Wed)
Exercises from the textbook. No exercises from the textbook.

Out-of-the-textbook exercises (these are as mandatory as the ones from the textbook).
Definition. For sets A, B, we say that A injects into B, and denote this by $A \rightarrow B$, if there is an injection $f: A \rightarrow B$.

1. Let A be a set and let $f: A \rightarrow[n+1]$ be an injection. Prove that if f is not surjective, then there is an injection $g: A \rightarrow[n]$.
Hint: Consider the cases depending on whether $n+1 \in f(A)$ or not. In each case, define g using f. In the case when $n+1 \in f(A)$, keep in mind that f is not surjective.
2. Prove that for all finite sets A, B, the following holds:
(a) $|A| \leq|B|$ if and only if $A \hookrightarrow B$.
(b) $|A|<|B|$ if and only if $A \hookrightarrow B$ but there is no bijection between A and B.
3. (a) Let A, B be finite sets. Prove that if there is a non-surjective injection $f: A \rightarrow B$, then $|A|<|B|$.
Hint: Let $n=|A|, m=|B|$, and define a non-surjective injection of [n] into [m]. Now use Exercise 1 above.
(b) Conclude that if a set D is in bijection with its proper subset, then D must be infinite. Hint: Prove the contrapositive using part (a).
Remark: This is Exercise 4.43 of the textbook.
4. Let A, B be sets.
(a) Prove that for any surjection $f: A \rightarrow B$ there is an injection $g: B \rightarrow A$ such that $f \circ g=\operatorname{id}_{B}$, i.e. for every $b \in B, f(g(b))=b$.
Remark: This g is not necessarily the inverse of f because it may not be true that $g \circ f=\mathrm{id}_{A}$. However, it's called a right-inverse of f.
Hint: For every $b \in B, g(b)$ has to be an element of $I_{f}(b)$.
(b) Assuming that A, B are finite, prove that if there is a surjection $f: A \rightarrow B$, then $|A| \geq|B|$.
5. Let A be a finite set and $f: A \rightarrow A$. Prove that f is injective if and only if it is surjective. Hint: First prove the forward direction \Rightarrow using from Exercise 2a. To prove the backward direction \Leftarrow, use Exercise 4a (above) in tandem with the forward direction of the current equivalence that you have already proven.
Remark: This is Exercise 4.45 of the textbook.
