MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

HOMEWORK 7

Due date: Oct 21 (Wed)

Exercises from the textbook. No exercises from the textbook.

Out-of-the-textbook exercises (these are as mandatory as the ones from the textbook).

Definition. For sets A, B, we say that A injects into B, and denote this by $A \hookrightarrow B$, if there is an injection $f : A \to B$.

1. Let A be a set and let $f : A \to [n+1]$ be an injection. Prove that if f is not surjective, then there is an injection $g : A \to [n]$.

HINT: Consider the cases depending on whether $n + 1 \in f(A)$ or not. In each case, define g using f. In the case when $n + 1 \in f(A)$, keep in mind that f is not surjective.

- **2.** Prove that for all finite sets A, B, the following holds:
 - (a) $|A| \leq |B|$ if and only if $A \hookrightarrow B$.
 - (b) |A| < |B| if and only if $A \hookrightarrow B$ but there is no bijection between A and B.
- **3.** (a) Let A, B be finite sets. Prove that if there is a non-surjective injection $f : A \to B$, then |A| < |B|.

HINT: Let n = |A|, m = |B|, and define a non-surjective injection of [n] into [m]. Now use Exercise 1 above.

- (b) Conclude that if a set D is in bijection with its *proper* subset, then D must be infinite.
 HINT: Prove the contrapositive using part (a).
 REMARK: This is Exercise 4.43 of the textbook.
- 4. Let A, B be sets.
 - (a) Prove that for any surjection f : A → B there is an injection g : B → A such that f ∘ g = id_B, i.e. for every b ∈ B, f(g(b)) = b.
 REMARK: This g is not necessarily the inverse of f because it may not be true that g ∘ f = id_A. However, it's called a *right-inverse* of f.
 HINT: For every b ∈ B, g(b) has to be an element of I_f(b).
 - (b) Assuming that A, B are finite, prove that if there is a surjection $f : A \to B$, then $|A| \ge |B|$.
- 5. Let A be a finite set and $f: A \to A$. Prove that f is injective if and only if it is surjective. HINT: First prove the forward direction \Rightarrow using from Exercise 2a. To prove the backward direction \Leftarrow , use Exercise 4a (above) in tandem with the forward direction of the current equivalence that you have already proven.

REMARK: This is Exercise 4.45 of the textbook.